We theoretically demonstrate a novel, to the best of our knowledge, mechanism for dark pulse excitation in normal dispersion microresonators exploiting free carrier dispersion and free carrier absorption effects due… Click to show full abstract
We theoretically demonstrate a novel, to the best of our knowledge, mechanism for dark pulse excitation in normal dispersion microresonators exploiting free carrier dispersion and free carrier absorption effects due to multi-photon absorption. Dark pulses can be generated in the three- and four-photon absorption regimes in the presence or absence of external reverse bias to control the lifetime of free carriers, respectively. Direct generation of dark pulses is proven to be feasible in both regimes with a frequency fixed laser. The dynamics of their temporal and spectral evolution have also been investigated. Our findings establish a reliable path for dark pulse and Kerr microcomb generation in related platforms with simplified controlling and tuning techniques.
               
Click one of the above tabs to view related content.