LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tiny velocity measurement using rotating petal-like mode of orbital angular momentum.

Photo from wikipedia

A novel, to the best of our knowledge, tiny velocity measurement system is proposed and demonstrated. This proposed system employs an interference structure in which the reference and measurement paths… Click to show full abstract

A novel, to the best of our knowledge, tiny velocity measurement system is proposed and demonstrated. This proposed system employs an interference structure in which the reference and measurement paths are filled by two light beams carrying opposite-sign orbital angular momentum (OAM), respectively. The tiny velocity to be measured in the measurement path causes the change of the light path and results in a time-varying phase shift between the reference and measurement paths. This time-varying phase shift leads to the rotation of the petal-like light spot obtained by the interference between two paths. The rotating angular velocity of the petal-like light spot is proportional to the time-varying phase shift caused by the tiny velocity, and it is measured by a chopper and a single-point detector instead of array detectors. This proposed system has a simple structure and achieves a high-accuracy tiny velocity measurement with a measurement error rate that is less than 10 nm/s.

Keywords: velocity; petal like; velocity measurement; tiny velocity; orbital angular

Journal Title: Optics letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.