LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator.

Photo by viazavier from unsplash

A compact, efficient, and monolithically grown III-V laser source provides an attractive alternative to bonding off-chip lasers for Si photonics research. Although recent demonstrations of microlasers on (001) Si wafers… Click to show full abstract

A compact, efficient, and monolithically grown III-V laser source provides an attractive alternative to bonding off-chip lasers for Si photonics research. Although recent demonstrations of microlasers on (001) Si wafers using thick metamorphic buffers are encouraging, scaling down the laser footprint to nanoscale and operating the nanolasers at telecom wavelengths remain significant challenges. Here, we report a monolithically integrated in-plane InP/InGaAs nanolaser array on (001) silicon-on-insulator (SOI) platforms with emission wavelengths covering the entire C band (1.55 μm). Multiple InGaAs quantum wells are embedded in high-quality InP nanoridges by selective-area growth on patterned (001) SOI. Combined with air-cladded InP/Si optical cavities, room-temperature operation at multiple telecom bands is obtained by defining different cavity lengths with lithography. The demonstration of telecom-wavelength monolithic nanolasers on (001) SOI platforms presents an important step towards fully integrated Si photonics circuits.

Keywords: ingaas; 001 silicon; silicon insulator; ingaas nanolaser; nanolaser array; inp ingaas

Journal Title: Optics letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.