Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single-mode fiber. A switching efficiency of 97% is… Click to show full abstract
Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single-mode fiber. A switching efficiency of 97% is achieved with a ∼1.7 ps switching time and signal-to-noise ratio of ∼800. Preservation of the single-photon properties is confirmed by measuring no significant increase in the second-order autocorrelation function g(2)(0). These values are attained with only nanojoule-level pump energies that are produced by a laser oscillator with 80 MHz repetition rate. The results highlight a simple device capable of both high-bandwidth operations and preservation of single-photon properties for applications in photonic quantum processing and ultrafast time-gating or switching.
               
Click one of the above tabs to view related content.