LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual-comb spectrally encoded confocal microscopy by electro-optic modulators

Photo from wikipedia

We demonstrate an electro-optic (EO) based dual-comb spectrally encoded confocal microscopy (DC-SECM). With the capability of large comb spacing (∼8.1-GHz) and comb-line to pixel mapping, only thirteen comb lines are… Click to show full abstract

We demonstrate an electro-optic (EO) based dual-comb spectrally encoded confocal microscopy (DC-SECM). With the capability of large comb spacing (∼8.1-GHz) and comb-line to pixel mapping, only thirteen comb lines are used to sample a spatial point of resolution size. Such spatial sampling effectively lessens the required average focal power for a given signal-to-noise ratio (SNR) and contributes to a higher power-efficiency, which alleviates the risk of photodamage. Furthermore, the tunable beating frequency (0–6 MHz) of dual comb interferometry (DCI) renders an achievable ultrafast imaging speed up to MHz level. The image performance was evaluated using a standard resolution target, indicating a lateral resolution of 2.76-μm, and further demonstrated with biological samples. Compared with time-stretch spectrally-encoded microscopy, the DC-SECM can not only achieve low-focal-power (∼30  μW) imaging but also function under minimum settings of both electrical bandwidth (hundreds-of MHz) and digitization sampling rate (1 Gs/s), while simultaneously maintaining a frame rate on the order of MHz.

Keywords: dual comb; comb; microscopy; spectrally encoded; comb spectrally; electro optic

Journal Title: Optics Letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.