We experimentally demonstrate the lasing action of a new nanolaser design with a tunnel junction. By using a heavily doped tunnel junction for hole injection, we can replace the p-type… Click to show full abstract
We experimentally demonstrate the lasing action of a new nanolaser design with a tunnel junction. By using a heavily doped tunnel junction for hole injection, we can replace the p-type contact material of a conventional nanolaser diode with a low-resistance n-type contact layer. This leads to a significant reduction of the device resistance and lowers the threshold voltage from 5 V to around 0.95 V at 77 K. The lasing behavior is verified by the light output versus the injection current (L-I) characterization and second-order coherence function measurements. Because of less Joule heating during current injection, the nanolaser can be operated at temperatures as high as 180 K under CW pumping. The incorporation of heavily doped tunnel junctions may pave the way for other nanoscale cavity design for improved heat management.
               
Click one of the above tabs to view related content.