LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spherical microcavity-based membrane-free Fizeau interferometric acoustic sensor.

Photo from wikipedia

The monitoring of acoustic waves is essential for a variety of applications, ranging from photoacoustic imaging to industrial non-destructive evaluation and monitoring. Optical acoustic sensors have many advantages over electrical… Click to show full abstract

The monitoring of acoustic waves is essential for a variety of applications, ranging from photoacoustic imaging to industrial non-destructive evaluation and monitoring. Optical acoustic sensors have many advantages over electrical counterparts such as passivity and immunity to electromagnetic interference, and can be quite compact with all-fiber structures. A common approach is to optically detect the acoustically induced mechanical movement of a cantilever or a reflective membrane. However, sensors based on moving mechanical parts have limitations, because they are influenced by the mechanical properties of the structures involved that behave as a coupled spring-mass system. Here a new type of optical acoustic sensing concept based on a spherical microcavity fiber Fizeau interferometer is described. The sensor is fabricated by inserting a section of single-mode fiber into a spherical microcavity to form a Fizeau interferometer. Thanks to the elasto-optic effect, the sound pressure modifies the refractive index of the microcavity; then a corresponding change in the interferometric spectrum can be observed. The sensor was successfully used to detect acoustic waves under the whole audible region, from 20 Hz to 20 kHz. The experimental results show that the sensitivity can be improved via altering the length of microcavity. The structure is membrane-free, and the sensitivity will not be limited by these size restrictions which makes the technology an interesting alternative to conventional transducers for acoustic wave measurement.

Keywords: membrane free; microcavity; spherical microcavity; fizeau; sensor

Journal Title: Optics letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.