LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Long-distance twin-field quantum key distribution with entangled sources

Photo by glenncarstenspeters from unsplash

Twin-field quantum key distribution (TFQKD), using single-photon-type interference, offers a way to exceed the rate-distance limit without quantum repeaters. However, it still suffers from photon losses and dark counts, which… Click to show full abstract

Twin-field quantum key distribution (TFQKD), using single-photon-type interference, offers a way to exceed the rate-distance limit without quantum repeaters. However, it still suffers from photon losses and dark counts, which impose an ultimate limit on its transmission distance. In this Letter, we propose a scheme to implement TFQKD with an entangled coherent state source in the middle to increase its range, as well as comparing its performance under coherent attacks with that of TFQKD variants. Simulations show that our protocol has a theoretical distance advantage of 400 km. Moreover, the scheme has great robustness against the misalignment error and finite-size effects. Our work is a promising step toward long-distance secure communication and is greatly compatible with future global quantum networks.

Keywords: key distribution; twin field; distance; quantum key; field quantum; quantum

Journal Title: Optics letters
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.