An acoustic microresonator (AmR) based in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) sensor with a line interaction mode is proposed for what is believed to be the first time. The interaction area… Click to show full abstract
An acoustic microresonator (AmR) based in-plane quartz-enhanced photoacoustic spectroscopy (IP-QEPAS) sensor with a line interaction mode is proposed for what is believed to be the first time. The interaction area for the acoustic wave of the proposed AmR, with a slotted sidewall, is not limited to a point of the quartz tuning fork (QTF) prongs, but extends along the whole plane of the QTF prongs. Sixteen types of AmRs are designed to identify the best parameters. Water vapor (H2O) is chosen as the analyte to verify the reported method. The results indicate that this AmR for IP-QEPAS with a line interaction mode not only provides a high signal level, but also reduces the thermal noise caused by the laser directly illuminating the QTF. Compared with standard IP-QEPAS without an AmR, the minimum detection limit (MDL) is improved by 4.11 times with the use of the technique proposed in this study.
               
Click one of the above tabs to view related content.