Vortices carrying quantized topological charges have potential applications in information processing. In this work, we investigate vortex carriers and waveguides in microcavity polariton condensates, nonresonantly excited by a homogeneous pump… Click to show full abstract
Vortices carrying quantized topological charges have potential applications in information processing. In this work, we investigate vortex carriers and waveguides in microcavity polariton condensates, nonresonantly excited by a homogeneous pump with intensity grooves. An intensity groove with a ring shape in the pump gives rise to dark-ring states of the condensate with a π-phase jump, akin to dark solitons. The dark-ring states can be destroyed by a stronger density of the surrounding condensate and reduce into vortex-antivortex pairs. Multiple vortex-pair states are found to be stable in the same dark ring of the pump. When the pump ring is broader, higher-order dark states with multiple π-phase jumps can be obtained, and interestingly they can be used to construct vortex waveguides. If a single vortex is imprinted in such waveguides, it can travel in a particular direction, showing one-way transportation. In other words, an imprinted vortex with a certain charge in a specifically designed higher-order dark state is only allowed to propagate unidirectionally.
               
Click one of the above tabs to view related content.