LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

To generate a photonic nanojet outside a high refractive index microsphere illuminated by a Gaussian beam.

Photo from wikipedia

A non-resonant, concentrated, narrow beam of light emerging from an illuminated microlens is called a photonic nanojet (PNJ). According to currently prevailing opinion, microspheres and microcylinders are only able to… Click to show full abstract

A non-resonant, concentrated, narrow beam of light emerging from an illuminated microlens is called a photonic nanojet (PNJ). According to currently prevailing opinion, microspheres and microcylinders are only able to generate a PNJ in their exterior when their refractive index ns (or refractive index contrast) is less than 2. In this Letter we demonstrate that a PNJ can emerge from a microsphere even when ns > 2: first by employing the laws of geometrical optics for a divergent light source; then, by using ray transfer matrix analysis, a mathematical condition for the Gaussian beam (GB) outside the high ns microsphere is derived. The PNJ outside the microsphere with ns = 2.5 is simulated using Generalized Lorenz-Mie theory (GLMT), by using a front focused GB source. The simulated difference between front and back focusing on the dependence of ns is confirmed experimentally by Raman imaging. By opening the PNJ field for high refractive index materials, we believe this work will be a nucleus for new ideas in the field and enable new PNJ applications.

Keywords: index; photonic nanojet; refractive index; pnj; gaussian beam

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.