LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-Hermitian topological mobility edges and transport in photonic quantum walks.

Photo by mitchorr from unsplash

In non-Hermitian quasicrystals, mobility edges (ME) separating localized and extended states in the complex energy plane can arise as a result of non-Hermitian terms in the Hamiltonian. Such ME are… Click to show full abstract

In non-Hermitian quasicrystals, mobility edges (ME) separating localized and extended states in the complex energy plane can arise as a result of non-Hermitian terms in the Hamiltonian. Such ME are of topological nature, i.e., the energies of localized and extended states exhibit distinct topological structures in the complex energy plane. However, depending on the origin of non-Hermiticity, i.e., asymmetry of hopping amplitudes or complexification of the incommensurate potential phase, different winding numbers are introduced, corresponding to different transport features in the bulk of the lattice: while ballistic transport is allowed in the former case, pseudo-dynamical localization is observed in the latter case. The results are illustrated by considering non-Hermitian photonic quantum walks in synthetic mesh lattices.

Keywords: photonic quantum; quantum walks; non hermitian; mobility edges

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.