Subwavelength all-dielectric resonators supporting Mie resonances are promising building blocks in nanophotonics. The coupling of dielectric resonators facilitates advanced shaping of Mie resonances. However, coupled dielectric resonators with anisotropic geometry… Click to show full abstract
Subwavelength all-dielectric resonators supporting Mie resonances are promising building blocks in nanophotonics. The coupling of dielectric resonators facilitates advanced shaping of Mie resonances. However, coupled dielectric resonators with anisotropic geometry can only be designed by time-consuming simulation utilizing parameter scanning, hampering their applications in nanophotonics. Herein, we propose and demonstrate that a combination of two fully connected networks can effectively design coupled dielectric resonators with targeted eigenfrequency and Q factor. Typical examples are given for validating the proposed network, where the normalized deviation rates of eigenfrequency and Q factor are 0.39% and 1.29%, respectively. The proposed neutral network might become a useful tool in designing coupled dielectric resonators and beyond.
               
Click one of the above tabs to view related content.