Stimulated emission depletion (STED) microscopy achieved with lanthanide-doped upconversion nanoparticles (UCNPs) exhibits many outstanding advantages such as low-power illumination, near-infrared (NIR) excitation, and high photostability. However, the available types of… Click to show full abstract
Stimulated emission depletion (STED) microscopy achieved with lanthanide-doped upconversion nanoparticles (UCNPs) exhibits many outstanding advantages such as low-power illumination, near-infrared (NIR) excitation, and high photostability. However, the available types of UCNP-STED probes are very limited and rely greatly on the specific depletion mechanism. Here, by combining the STED and the energy migration upconversion processes, emissions of Tb3+, Eu3+, Dy3+, and Sm3+ distributed in the shell can all be depleted by interrupting the injected energy flux from the Tm3+-doped core nanoparticles. With the merit of the proposed strategy, new types of UCNP-STED probes are demonstrated to perform emission-varying STED imaging with one single, fixed pair of low-power NIR continuous wave lasers.
               
Click one of the above tabs to view related content.