LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Huygens' metasurface-based surface plasmon coupler with near-unit efficiency.

Photo from wikipedia

Surface plasmon polaritons (SPPs) and their counterparts at low frequency (i.e., spoof SPPs) have been attracting a lot of attention recently due to their potential application for routing information with… Click to show full abstract

Surface plasmon polaritons (SPPs) and their counterparts at low frequency (i.e., spoof SPPs) have been attracting a lot of attention recently due to their potential application for routing information with high speeds and bandwidth. To further develop integrated plasmonics, a high-efficiency surface plasmon coupler is required for full elimination of the intrinsic scattering and reflection when exciting the highly confined plasmonic modes, but a solution to this challenge has remained elusive so far. To take on this challenge, here we propose a feasible spoof SPP coupler based on a transparent Huygens' metasurface, which is able to realize more than 90% efficiency in near- and far-field experiments. To be specific, electrical and magnetic resonators are designed separately on both sides of the metasurface to satisfy the impedance-matching condition everywhere, leading to full conversion of plane wave propagation into surface wave propagation. Moreover, a well-optimized plasmonic metal which is able to support an eigen SPP is designed. This proposed high-efficiency spoof SPP coupler based on a Huygens' metasurface may pave the way for the development of high-performance plasmonic devices.

Keywords: surface plasmon; plasmon coupler; surface; huygens metasurface; efficiency

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.