A fast and practical computational cross-calibration of multiple spectrometers is described. A signal correlation matrix (CM) can be constructed from paired B-scans in a multiple-spectrometer optical coherence tomography (OCT), where… Click to show full abstract
A fast and practical computational cross-calibration of multiple spectrometers is described. A signal correlation matrix (CM) can be constructed from paired B-scans in a multiple-spectrometer optical coherence tomography (OCT), where the wavelength-corresponding pixels are indicated by high cross correlation. The CM can be used to either guide the physical alignment of spectrometers or to numerically match the spectra in the post-process. The performance is comparable to the previously reported optimization approach, as demonstrated by the mirror tests, qualitative comparison of OCT and optical coherence tomography angiography (OCTA) images, and quantitative comparison of image metrics.
               
Click one of the above tabs to view related content.