LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tri-zone flame spatial structure imaging combined with endogenic polarized scattering.

Photo from wikipedia

We propose a multi-mode optical imaging method to retrieve the 2D and 3D spatial structures of the preheating, reaction, and recombination zones of an axisymmetric steady flame. In the proposed… Click to show full abstract

We propose a multi-mode optical imaging method to retrieve the 2D and 3D spatial structures of the preheating, reaction, and recombination zones of an axisymmetric steady flame. In the proposed method, an infrared camera, a visible light monochromatic camera, and a polarization camera are triggered synchronously to capture 2D flame images, and their corresponding 3D images are reconstructed by combining different projection position images. The results of the experiments conducted indicate that the infrared and visible light images represent the flame preheating and flame reaction zones, respectively. The polarized image can be obtained by computing the degree of linear polarization (DOLP) of raw images captured by the polarization camera. We discover that the highlighted regions in the DOLP images lie outside the infrared and visible light zones; they are insensitive to the flame reaction and have different spatial structures for different fuels. We deduce that the combustion product particles cause endogenic polarized scattering, and that the DOLP images represent the flame recombination zone. This study focuses on the combustion mechanisms, such as the formation of combustion products and quantitative flame composition and structure.

Keywords: structure; flame; camera; endogenic polarized; visible light; polarized scattering

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.