LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Topological Floquet bound states in the continuum.

Photo from wikipedia

A honeycomb array of helical waveguides with zigzag-zigzag edges and a refractive index gradient orthogonal to the edges may support Floquet bound states in the continuum (BICs). The gradient of… Click to show full abstract

A honeycomb array of helical waveguides with zigzag-zigzag edges and a refractive index gradient orthogonal to the edges may support Floquet bound states in the continuum (BICs). The gradient of the refractive index leads to strong asymmetry of the Floquet-Bloch spectrum. The mechanism of creation of such Floquet BICs is understood as emergence of crossings and avoided crossings of the branches supported by spatially limited stripe array. The whole spectrum of a finite array is split into the bulk branches being a continuation of the edge states in the extended zone revealing multiple self-crossings and bulk modes disconnected from the gap states by avoided crossings. Nearly all states in the system are localized due to the gradient, but topological edge states manifest much stronger localization than other states. Such strongly localized Floquet BICs coexist with localized Wannier-Stark-like bulk modes. Robustness of the edge Floquet states is confirmed by their passage through a localized edge defect in the form of a missing waveguide.

Keywords: bound states; states continuum; floquet; floquet bound; topological floquet; array

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.