LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly efficient green emission Cs4PbBr6 quantum dots with stable water endurance.

Photo from wikipedia

To date, quantum dots (QDs) based on perovskite materials with high photoluminescence quantum yield (PLQY) and stability have rarely been reported. In this work, Cs4PbBr6 QDs glass ceramic with high… Click to show full abstract

To date, quantum dots (QDs) based on perovskite materials with high photoluminescence quantum yield (PLQY) and stability have rarely been reported. In this work, Cs4PbBr6 QDs glass ceramic with high PLQY and water stability is obtained, and the research results confirm that the strong green emission originates from the trapping of free excitons by internal Br vacancies. The rise of Br vacancies and the spontaneous growth of multi-morphology Cs4PbBr6 QDs under the influence of air humidity increase the PLQY to 89.62%. Compared with pure QDs, the Cs4PbBr6 QDs maintain high-intensity luminescence after being immersed in water for up to 150 days. In short, this paper puts forward a new, to the best of our knowledge, and valuable perspective for investigating the luminescence of Cs4PbBr6 QDs glass ceramic derived from related work.

Keywords: cs4pbbr6; green emission; quantum dots; water; cs4pbbr6 qds

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.