Photon pairs generated by spontaneous parametric downconversion are essential for optical quantum information processing, in which the quality of biphoton states is crucial for the performance. To engineer the biphoton… Click to show full abstract
Photon pairs generated by spontaneous parametric downconversion are essential for optical quantum information processing, in which the quality of biphoton states is crucial for the performance. To engineer the biphoton wave function (BWF) on-chip, the pump envelope function and the phase matching function are commonly adjusted, while the modal field overlap has been considered as a constant in the frequency range of interest. In this work, by using modal coupling in a system of coupled waveguides, we explore the modal field overlap as a new degree of freedom for biphoton engineering. We provide design examples for on-chip generations of polarization entangled photons and heralded single photons. This strategy can be applied to waveguides of different materials and structures, offering new possibilities for photonic quantum state engineering.
               
Click one of the above tabs to view related content.