LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nonlinear post-compression in multi-pass cells in the mid-IR region using bulk materials.

Photo by goian from unsplash

We numerically investigate the regime of nonlinear pulse compression at mid-IR wavelengths in a multi-pass cell (MPC) containing a dielectric plate. This post-compression setup allows for ionization-free spectral broadening and… Click to show full abstract

We numerically investigate the regime of nonlinear pulse compression at mid-IR wavelengths in a multi-pass cell (MPC) containing a dielectric plate. This post-compression setup allows for ionization-free spectral broadening and self-compression while mitigating self-focusing effects. We find that self-compression occurs for a wide range of MPC and pulse parameters and derive scaling rules that enable its optimization. We also reveal the solitonic dynamics of the pulse propagation in the MPC and its limitations and show that spatiotemporal/spectral couplings can be mitigated for appropriately chosen parameters. In addition, we reveal the formation of spectral features akin to quasi-phase matched degenerate four-wave mixing. Finally, we present two case studies of self-compression at 3-μm and 6-μm wavelengths using pulse parameters compatible with driving high-field physics experiments. The simulations presented in this paper set a framework for future experimental work using few-cycle pulses at mid-IR wavelengths.

Keywords: compression; post compression; multi pass; self compression

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.