LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High sensitivity multitasking non-reciprocity sensor using the photonic spin Hall effect.

Photo by tabithaturnervisuals from unsplash

A non-reciprocity sensor based on a layered structure with multitasking is proposed, which realizes biological detection and angle sensing. Through an asymmetrical arrangement of different dielectrics, the sensor obtains non-reciprocity… Click to show full abstract

A non-reciprocity sensor based on a layered structure with multitasking is proposed, which realizes biological detection and angle sensing. Through an asymmetrical arrangement of different dielectrics, the sensor obtains non-reciprocity on the forward and backward scales, thus achieving multi-scale sensing in different measurement ranges. The structure sets the analysis layer. Injecting the analyte into the analysis layers by locating the peak value of the photonic spin Hall effect (PSHE) displacement, cancer cells can accurately be distinguished from normal cells via refractive index (RI) detection on the forward scale. The measurement range is 1.569∼1.662, and the sensitivity (S) is 2.97 × 10-2 m/RIU. On the backward scale, the sensor is able to detect glucose solution with 0∼400 g/L concentrations (RI = 1.3323∼1.38), with S = 1.16 × 10-3 m/RIU. When the analysis layers are filled with air, high-precision angle sensing can be achieved in the terahertz range by locating the incident angle of the PSHE displacement peak; 30°∼45°, and 50°∼65° are the detection ranges, and the highest S can reach 0.032 THz/°. This sensor contributes to detecting cancer cells and biomedical blood glucose and offers a new way to the angle sensing.

Keywords: reciprocity sensor; photonic spin; spin hall; non reciprocity; sensor

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.