LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical Neural Ordinary Differential Equations

Photo from wikipedia

Increasing the layer number of on-chip photonic neural networks (PNNs) is essential to improve its model performance. However, the successive cascading of network hidden layers results in larger integrated photonic… Click to show full abstract

Increasing the layer number of on-chip photonic neural networks (PNNs) is essential to improve its model performance. However, the successive cascading of network hidden layers results in larger integrated photonic chip areas. To address this issue, we propose the optical neural ordinary differential equations (ON-ODEs) architecture that parameterizes the continuous dynamics of hidden layers with optical ODE solvers. The ON-ODE comprises the PNNs followed by the photonic integrator and optical feedback loop, which can be configured to represent residual neural networks (ResNets) and implement the function of recurrent neural networks with effectively reduced chip area occupancy. For the interference-based optoelectronic nonlinear hidden layer, the numerical experiments demonstrate that the single hidden layer ON-ODE can achieve approximately the same accuracy as the two-layer optical ResNets in image classification tasks. In addition, the ON-ODE improves the model classification accuracy for the diffraction-based all-optical linear hidden layer. The time-dependent dynamics property of ON-ODE is further applied for trajectory prediction with high accuracy.

Keywords: neural networks; optical neural; hidden layer; ordinary differential; neural ordinary; differential equations

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.