LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Spectral splitting of the lasing emission of nitrogen ions pumped by 800-nm femtosecond laser pulses.

Photo from wikipedia

We report on a spectral splitting effect of the cavity-less lasing emission of nitrogen ions at 391.4 nm pumped by 800-nm femtosecond laser pulses. It was found that with the increase… Click to show full abstract

We report on a spectral splitting effect of the cavity-less lasing emission of nitrogen ions at 391.4 nm pumped by 800-nm femtosecond laser pulses. It was found that with the increase of the nitrogen gas pressure and pump pulse energy, both R and P branches experience spectral splitting. With an external injected seeding pulse, a similar split spectral line is observed for the amplified emission. In contrast, for the fluorescence radiation, no such spectral splitting phenomenon is observed with much more abundant R branch structures. Our theoretical model considers gas ionization by the pump pulse, the competition of excitation of all relevant electronic and vibrational states, and an amplification of the seeding pulse in the plasma with a population inversion. Our simulation reproduces this spectral splitting effect, which is attributed to the gain saturation resulting in the oscillation of the amplitude of the amplified signal.

Keywords: emission nitrogen; spectral splitting; lasing emission; emission; nitrogen ions

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.