LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid photonic bandgap effect in twisted hollow-core photonic bandgap fibers.

Photo by adrian_trinkaus from unsplash

A hybrid photonic bandgap effect in twisted hollow-core photonic bandgap fibers (HC-PBFs) is theoretically investigated for the first time, to the best of our knowledge. Due to the topological effect,… Click to show full abstract

A hybrid photonic bandgap effect in twisted hollow-core photonic bandgap fibers (HC-PBFs) is theoretically investigated for the first time, to the best of our knowledge. Due to the topological effect, twisting of the fibers changes the effective refractive index and lifts the degeneracy of the photonic bandgap ranges of the cladding layers. This twist-induced hybrid photonic bandgap effect shifts up the center wavelength and narrows the bandwidth of the transmission spectrum. A quasi-single-mode low-loss transmission is achieved in the twisted 7-cell HC-PBFs with a twisting rate α = 7-8 rad/mm, which has a loss < 30 dB/km and higher-order mode extinction ratio > 15 dB. The twisted HC-PBFs could be suitable for applications such as spectral and mode filters.

Keywords: bandgap effect; effect twisted; bandgap; hybrid photonic; photonic bandgap

Journal Title: Optics letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.