LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-sites energy transfer in Fe3+-doped KAl11O17 phosphor toward zero thermal quenching near-infrared luminescence.

Photo from wikipedia

Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) have demonstrated great potential for optoelectronic and biomedical applications, while the exploration of NIR phosphors with high thermal stability remains a challenge. Herein, we… Click to show full abstract

Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) have demonstrated great potential for optoelectronic and biomedical applications, while the exploration of NIR phosphors with high thermal stability remains a challenge. Herein, we report an NIR phosphor KAl11O17:Fe3+ with zero thermal quenching (TQ) behavior up to 200°C. The asymmetrical broadband NIR emission with three sub-bands centered at 700, 770, and 800 nm is related to the superposition of different Fe3+ emission centers located in Al2O4, Al3O6, and Al4O6 sites of the KAl11O17 host, respectively. Temperature- and Fe3+ concentration-dependent emission spectra verify that the energy transfer (ET) between multiple Fe3+ emitters and the weak electron-phonon coupling (EPC) effect contribute to the thermally stable broadband NIR emission. The fabricated NIR pc-LED using optimized KAl11O17:Fe3+ phosphor exhibits great potential in information encryption applications.

Keywords: fe3; phosphor; zero thermal; near infrared; thermal quenching; energy transfer

Journal Title: Optics letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.