Extremely strong terahertz (THz) waves are desperately demanded for investigating nonlinear physics, spectroscopy, and imaging in the THz range. However, traditional crystal-/semiconductor-based THz sources have limitations of reaching extremely high… Click to show full abstract
Extremely strong terahertz (THz) waves are desperately demanded for investigating nonlinear physics, spectroscopy, and imaging in the THz range. However, traditional crystal-/semiconductor-based THz sources have limitations of reaching extremely high amplitude due to the damage threshold of devices. Here, by introducing Raman amplification to the THz range, we propose a novel, to the best of our knowledge, scheme to amplify THz waves in plasma. A long-pulse CO2 pump laser transfers its energy to a multicycle, 10-THz seed in a two-step plasma. By one-dimensional simulations, a 0.87-GV/m, 1.2-ps-duration THz seed is amplified to 10 GV/m in a 5.7-mm-long plasma with an amplification efficiency approaching 1%. The method provides a new technology to manipulate the intensity of THz waves.
               
Click one of the above tabs to view related content.