We investigate soliton self-compression and photoionization effects in an argon-filled antiresonant hollow-core photonic crystal fiber pumped with a commercial Yb:KGW laser. Before the onset of photoionization, we demonstrate self-compression of… Click to show full abstract
We investigate soliton self-compression and photoionization effects in an argon-filled antiresonant hollow-core photonic crystal fiber pumped with a commercial Yb:KGW laser. Before the onset of photoionization, we demonstrate self-compression of our 220 fs pump laser to 13 fs in a single and compact stage. By using the plasma driven soliton self-frequency blueshift, we also demonstrate a tunable source from 1030 to ∼700 nm. We fully characterize the compressed pulses using sum-frequency generation time-domain ptychography, experimentally revealing the full time-frequency plasma-soliton dynamics in hollow-core fiber for the first time.
               
Click one of the above tabs to view related content.