LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep learning empowered highly compressive SS-OCT via learnable spectral-spatial sub-sampling.

Photo from wikipedia

With the rapid advances of light source technology, the A-line imaging rate of swept-source optical coherence tomography (SS-OCT) has experienced a great increase in the past three decades. The bandwidths… Click to show full abstract

With the rapid advances of light source technology, the A-line imaging rate of swept-source optical coherence tomography (SS-OCT) has experienced a great increase in the past three decades. The bandwidths of data acquisition, data transfer, and data storage, which can easily reach several hundred megabytes per second, have now been considered major bottlenecks for modern SS-OCT system design. To address these issues, various compression schemes have been previously proposed. However, most of the current methods focus on enhancing the capability of the reconstruction algorithm and can only provide a data compression ratio (DCR) up to 4 without impairing the image quality. In this Letter, we proposed a novel design paradigm, in which the sub-sampling pattern for interferogram acquisition is jointly optimized with the reconstruction algorithm in an end-to-end manner. To validate the idea, we retrospectively apply the proposed method on an ex vivo human coronary optical coherence tomography (OCT) dataset. The proposed method could reach a maximum DCR of ∼62.5 with peak signal-to-noise ratio (PSNR) of 24.2 dB, while a DCR of ∼27.78 could yield a visually pleasant image with a PSNR of ∼24.6 dB. We believe the proposed system could be a viable remedy for the ever-growing data issue in SS-OCT.

Keywords: sub sampling; learning empowered; empowered highly; deep learning; oct

Journal Title: Optics letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.