LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In vivo endoscopic ultrasound imaging with a rotational-scanning, all-optical ultrasound probe.

Photo from wikipedia

All-optical ultrasound manipulates ultrasound waves based on laser and photonics technologies, providing an alternative approach for pulse-echo ultrasound imaging. However, its endoscopic imaging capability is limited ex vivo by the… Click to show full abstract

All-optical ultrasound manipulates ultrasound waves based on laser and photonics technologies, providing an alternative approach for pulse-echo ultrasound imaging. However, its endoscopic imaging capability is limited ex vivo by the multifiber connection between the endoscopic probe and the console. Here, we report on all-optical ultrasound for in vivo endoscopic imaging using a rotational-scanning probe that relies on a small laser sensor to detect echo ultrasound waves. The acoustically induced lasing frequency change is measured via heterodyne detection by beating the two orthogonally polarized laser modes, enabling a stable output of ultrasonic responses and immunity to low-frequency thermal and mechanical disturbances. We miniaturize its optical driving and signal interrogation unit and synchronously rotate it with the imaging probe. This specialized design leaves a single-fiber connection to the proximal end and allows fast rotational scanning of the probe. As a result, we used a flexible, miniature all-optical ultrasound probe for in vivo rectal imaging with a B-scan rate of 1 Hz and a pullback range of ∼7 cm. This can visualize the gastrointestinal and extraluminal structures of a small animal. This imaging modality offers an imaging depth of 2 cm at a central frequency of ∼20 MHz, showing promise for high-frequency ultrasound imaging applications in gastroenterology and cardiology.

Keywords: rotational scanning; vivo endoscopic; optical ultrasound; ultrasound imaging; probe

Journal Title: Optics letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.