LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-power femtosecond regenerative amplifier based on Yb:CaYAlO4 dual-crystal configuration.

Photo from wikipedia

A thermal lens insensitive regenerative amplifier (RA) with a dual Yb:CaYAlO4 (Yb:CYA) crystal configuration for extending gain spectra is demonstrated for the first time, to the best of our knowledge.… Click to show full abstract

A thermal lens insensitive regenerative amplifier (RA) with a dual Yb:CaYAlO4 (Yb:CYA) crystal configuration for extending gain spectra is demonstrated for the first time, to the best of our knowledge. By orthogonalizing the orientation of two a-cut Yb:CYA crystals in one RA, the Q switched spectrum with a full width at half maximum of 15.4 nm is generated, which is 1.5 and 1.6 times of the Q switched spectral bandwidth with π- and σ-polarization, respectively. With chirped pulses injection, this RA can deliver laser pulses with an average power exceeding 10 W at the repetition rate of 20-800 kHz and pulse energy of 1.5 mJ at 1 kHz. This is the highest average power from the Yb:CYA RA to the best of our knowledge. Finally, compressed pulses of 163 fs with 92% overall efficiency are realized. Thanks to the heat insensitive cavity design and excellent thermodynamic properties of the Yb:CYA crystal, the output laser beam is close to the diffraction limit with an M2 value of 1.07 × 1.07.

Keywords: high power; regenerative amplifier; power; crystal configuration

Journal Title: Optics letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.