A thermal lens insensitive regenerative amplifier (RA) with a dual Yb:CaYAlO4 (Yb:CYA) crystal configuration for extending gain spectra is demonstrated for the first time, to the best of our knowledge.… Click to show full abstract
A thermal lens insensitive regenerative amplifier (RA) with a dual Yb:CaYAlO4 (Yb:CYA) crystal configuration for extending gain spectra is demonstrated for the first time, to the best of our knowledge. By orthogonalizing the orientation of two a-cut Yb:CYA crystals in one RA, the Q switched spectrum with a full width at half maximum of 15.4 nm is generated, which is 1.5 and 1.6 times of the Q switched spectral bandwidth with π- and σ-polarization, respectively. With chirped pulses injection, this RA can deliver laser pulses with an average power exceeding 10 W at the repetition rate of 20-800 kHz and pulse energy of 1.5 mJ at 1 kHz. This is the highest average power from the Yb:CYA RA to the best of our knowledge. Finally, compressed pulses of 163 fs with 92% overall efficiency are realized. Thanks to the heat insensitive cavity design and excellent thermodynamic properties of the Yb:CYA crystal, the output laser beam is close to the diffraction limit with an M2 value of 1.07 × 1.07.
               
Click one of the above tabs to view related content.