LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Substrate-mediated plasmon hybridization toward high-performance light trapping.

Photo from wikipedia

High-performance light trapping in metamaterials and metasurfaces offers prospects for the integration of multifunctional photonic components at subwavelength scales. However, constructing these nanodevices with reduced optical losses remains an open… Click to show full abstract

High-performance light trapping in metamaterials and metasurfaces offers prospects for the integration of multifunctional photonic components at subwavelength scales. However, constructing these nanodevices with reduced optical losses remains an open challenge in nanophotonics. Herein, we design and fabricate aluminum-shell-dielectric gratings by integrating low-loss aluminum materials with metal-dielectric-metal designs for high-performance light trapping featuring nearly perfect light absorption with broadband and large angular tuning ranges. The mechanism governing these phenomena is identified as the occurrence of substrate-mediated plasmon hybridization that allows energy trapping and redistribution in engineered substrates. Furthermore, we strive to develop an ultrasensitive nonlinear optical method, namely, plasmon-enhanced second-harmonic generation (PESHG), to quantify the energy transfer from metal to dielectric components. Our studies may provide a mechanism for expanding the potential of aluminum-based systems in practical applications.

Keywords: light trapping; substrate mediated; performance light; high performance; mediated plasmon

Journal Title: Optics letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.