To achieve non-invasive and high effective resolution microvascular imaging in vivo, photothermal modulation speckle optical coherence tomography (PMS-OCT) imaging technology is proposed in this Letter to enhance the speckle signal… Click to show full abstract
To achieve non-invasive and high effective resolution microvascular imaging in vivo, photothermal modulation speckle optical coherence tomography (PMS-OCT) imaging technology is proposed in this Letter to enhance the speckle signal of the bloodstream for improving the imaging contrast and image quality in the deeper depth of Fourier domain optical coherence tomography (FD-OCT). The results of simulation experiments proved that this photothermal effect could disturb and enhance the speckle signals, because the photothermal effect could modulate the sample volume to expand and change the refractive index of tissues, leading to the change in the phase of interference light. Therefore, the speckle signal of the bloodstream will also change. With this technology we obtain a clear cerebral vascular nondestructive image of a chicken embryo at a certain imaging depth. This technology expands the application fields of optical coherence tomography (OCT) especially in more complex biological structures and tissues, such as the brain, and provides a new way, to the best of our knowledge, for the application of OCT in brain science.
               
Click one of the above tabs to view related content.