This paper presents a U-fiber-based biosensor to achieve temperature-compensated acetylcholine-specific measurement. The surface plasmon resonance (SPR) and multimode interference (MMI) effects are simultaneously realized in a U-shaped fiber structure for… Click to show full abstract
This paper presents a U-fiber-based biosensor to achieve temperature-compensated acetylcholine-specific measurement. The surface plasmon resonance (SPR) and multimode interference (MMI) effects are simultaneously realized in a U-shaped fiber structure for the first time, to the best of our knowledge. The experimental results show refractive index (RI) sensitivities of 3042 and 2958 nm/RIU and temperature sensitivities of -0.47 and -0.40 nm/°C for the MMI and SPR, which are greatly improved compared with the traditional structure. Simultaneously, a sensitivity matrix for detecting two parameters is introduced to solve the problem of temperature interference of biosensors based on RI changes. Label-free detection of acetylcholine (ACh) was achieved by immobilizing acetylcholinesterase (AChE) on optical fibers. The experimental results show that the sensor can realize the specific detection of acetylcholine and has good stability and selectivity, and the detection limit of the sensor is 30 nM. The sensor has the advantages of simple structure, high sensitivity, convenient operation, direct insertion into small spaces, temperature compensation, etc., which provide an important supplement to traditional fiber-optic SPR biosensors.
               
Click one of the above tabs to view related content.