LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Quasi-symmetry-protected BICs in a double-notched silicon nanodisk metasurface.

Photo by photified from unsplash

Bound states in the continuum (BICs) hold great promise in enhancing light-matter interaction as they have an infinite Q-factor. To date, the symmetry-protected BIC (SP-BIC) is one of the most… Click to show full abstract

Bound states in the continuum (BICs) hold great promise in enhancing light-matter interaction as they have an infinite Q-factor. To date, the symmetry-protected BIC (SP-BIC) is one of the most intensively studied BICs because it is easily found in a dielectric metasurface satisfying certain group symmetry. To convert SP-BICs into quasi-BICs (QBICs), structural symmetry shall be broken so that external excitation can access them. Usually, the unit cell's asymmetry is created by removing or adding parts of dielectric nanostructures. The QBICs are usually excited only by s-polarized or p-polarized light because of the symmetry-breaking of the structure. In this work, we investigate the excited QBIC properties by introducing double notches on the edges of highly symmetrical silicon nanodisks. The QBIC shares the same optical response under the s-polarized and p-polarized light. The effect of polarization on coupling efficiency between the QBIC mode and incident light is studied, and the highest coupling efficiency occurs at a polarization angle of 135 ∘, which corresponds to the radiative channel. Moreover, the near-field distribution and multipole decomposition confirm that the QBIC is dominated by the magnetic dipole along the z direction. It is noted that the QBIC covers a wide spectrum region. Finally, we present an experimental confirmation; the measured spectrum shows a sharp Fano resonance with a Q-factor of 260. Our results suggest promising applications in enhancing light-matter interaction, such as lasing, sensing, and nonlinear harmonic generation.

Keywords: symmetry protected; quasi symmetry; protected bics; symmetry; silicon; metasurface

Journal Title: Optics letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.