LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent progress in topological waveguides and nanocavities in a semiconductor photonic crystal platform [Invited]

Photo from wikipedia

Topological photonics provides a novel route for designing and realizing optical devices with unprecedented functionalities. Topological edge states, which are supported at the boundary of two photonic systems with different… Click to show full abstract

Topological photonics provides a novel route for designing and realizing optical devices with unprecedented functionalities. Topological edge states, which are supported at the boundary of two photonic systems with different band topologies, enable robust light transport immune to structural imperfections and/or sharp bends in waveguides. Furthermore, the topological edge states are expected to revolutionize cavity-based optical devices such as lasers. Optical devices with built-in topological protection with a small footprint are fascinating as on-chip optical devices for low-loss and functional photonic integrated circuits. Semiconductor photonic crystals are promising platforms enabling the miniaturization of topological optical devices. Herein, we review the recent realizations of semiconductor topological photonic crystals. In particular, we discuss topological waveguides in valley photonic crystals, which have received increasing attention because of their simple realization. In addition, we provide recent demonstrations of topological nanocavities, which are another key component of topological nanophotonics. Progress in semiconductor topological photonic crystals will propel the use of topological photonic devices in various applications as well as deepen the understanding of topological photonic phenomena at the wavelength scale.

Keywords: progress; photonic crystals; semiconductor photonic; optical devices; topological photonic; topological waveguides

Journal Title: Optical Materials Express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.