LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional wavefront-controlled metasurface for generating multiform quasi non-diffracting beams

Photo by zhuzhutrain from unsplash

Multiform electromagnetic beams (multi-direction, multi-polarization, multi-frequency, and multi-beam) generated by ultrathin metasurfaces show promising prospects in multiple optical traps, modern communication systems, and identification in complex environments. However, their application… Click to show full abstract

Multiform electromagnetic beams (multi-direction, multi-polarization, multi-frequency, and multi-beam) generated by ultrathin metasurfaces show promising prospects in multiple optical traps, modern communication systems, and identification in complex environments. However, their application is limited by their inability to generate desired multiform beams simultaneously. Here, a multifunctional surface using a polarization selection structure and integrated electric and magnetic structures is proposed to solve the above problem. This surface is composed of three layers with weak coupling that can achieve different quasi-nondiffracting beams. The top and bottom layers are reflective surfaces that can reflect two different incident waves to generate two types of quasi-non-diffracting beams. The middle layer is a transmissive surface that can transmit another incident wave to generate the third type of quasi-non-diffracting beams. For verification, the surface was fabricated and tested. The results of a full-wave simulation and measurements revealed that three different forms of quasi-non-diffracting beams could be generated by the proposed surface.

Keywords: multiform; diffracting beams; quasi non; surface; non diffracting

Journal Title: Optical Materials Express
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.