LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prospects and limitations of bottom-up fabricated hollow-core waveguides

Photo by shaikhulud from unsplash

We perform a numerical simulation study of hollow-core anti-resonant reflection optical waveguides (ARROWs) fabricated using lithography and material deposition in the context of their suitability as a platform for on-chip… Click to show full abstract

We perform a numerical simulation study of hollow-core anti-resonant reflection optical waveguides (ARROWs) fabricated using lithography and material deposition in the context of their suitability as a platform for on-chip photonic quantum information processing. We explore the effects of the core size, the number of pairs of anti-resonant layers surrounding the hollow core, and the refractive index contrast between the anti-resonant layer materials on propagation losses in the waveguide. Additionally, we investigate the feasibility of integrating these waveguides with Bragg gratings and dielectric metasurfaces to form on-chip cavities that could act as nonlinear optical elements controllable with single photons when loaded with atomic ensembles.

Keywords: hollow core; limitations bottom; anti resonant; prospects limitations; bottom fabricated; core

Journal Title: Optical Materials Express
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.