LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pulsed Bessel beam-induced microchannels on a diamond surface for versatile microfluidic and sensing applications

Photo from wikipedia

We present a laser machining method based on the use of pulsed Bessel beams to create, by single pass transverse writing, three-dimensional trench-like microstructures on a synthetic monocrystalline diamond substrate.… Click to show full abstract

We present a laser machining method based on the use of pulsed Bessel beams to create, by single pass transverse writing, three-dimensional trench-like microstructures on a synthetic monocrystalline diamond substrate. By tuning the laser pulse energy and the writing speed, it is possible to control the features of the surface trenches obtained and to optimize the resulting high aspect-ratio and low roughness microstructures. This work confirms the potentialities of quasi-stationary beams in ultra-fast laser inscription technology. In particular the presented results show the possibility to fabricate deep and precise microfluidic channels on biocompatible diamond substrates, offering a great potential for biomedical sensing applications.

Keywords: pulsed bessel; beam induced; diamond; bessel beam; sensing applications

Journal Title: Optical Materials Express
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.