Heterogeneous integration of InP devices to Si substrates by adhesive-less micro transfer printing requires flat surfaces for optimum attachment and thermal sinking. InGaAs and InAlAs sacrificial layers are compared for… Click to show full abstract
Heterogeneous integration of InP devices to Si substrates by adhesive-less micro transfer printing requires flat surfaces for optimum attachment and thermal sinking. InGaAs and InAlAs sacrificial layers are compared for the selective undercut of InP coupons by FeCl3:H2O (1:2). InAlAs offers isotropic etches and superior selectivity (> 4,000) to InP when compared with InGaAs. A 500 nm thick InAlAs sacrificial layer allows the release of wide coupons with a surface roughness < 2 nm and a flatness < 20 nm. The InAlAs release technology is applied to the transfer printing of a pre-fabricated InP laser to a Si substrate.
               
Click one of the above tabs to view related content.