LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dark plasmon in asymmetric nanoring arrays on conducting substrates and related applications

Photo by karsten_wuerth from unsplash

We put forward a theoretical analysis of the optical properties of an asymmetric nanoring array on a gold metal layer. We show that for normal incidence, the spectrum of the… Click to show full abstract

We put forward a theoretical analysis of the optical properties of an asymmetric nanoring array on a gold metal layer. We show that for normal incidence, the spectrum of the symmetric system is characterized by a general dipolar ring resonance. For the asymmetric nanoring with an offset inner surface, obviously both dark monopolar and quadrupolar ring resonances can be generated under a normal incidence, which depends sensitively on the asymmetry of the structure. Meanwhile, the symmetry breaking of the structure provides the desirable near-field characteristics for biosensing. As a result, monopolar and multipolar modes reveal ultrahigh refractive sensitivities as large as 792 nm/RIU and 742 nm/RIU, respectively. Furthermore, due to their subradiant features, the resulting FOM is 72 RIU−1 for the monopolar mode and the record high value of 137.4 RIU−1 for the quadrupolar mode in a wide refractive index range of 1.33-1.38. These results indicate that an asymmetric ring system could be promising for biosensing applications with high performance.

Keywords: riu; asymmetric nanoring; dark plasmon; nanoring arrays; plasmon asymmetric; nanoring

Journal Title: Optical Materials Express
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.