LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-power, electronically controlled source of user-defined vortex and vector light beams based on a few-mode fiber amplifier

Photo from wikipedia

Orbital angular momentum (OAM) based structured light beams provide an additional degree of freedom for practical applications ranging from optical communication to laser-based material processing. Many techniques exist for generating… Click to show full abstract

Orbital angular momentum (OAM) based structured light beams provide an additional degree of freedom for practical applications ranging from optical communication to laser-based material processing. Many techniques exist for generating such beams within laser sources and these primarily rely upon the use of specially designed optical components that limit laser power scaling and ready tunability of the topological charge and polarization of the output OAM beams. Here we show that some of these limitations can be overcome by employing a computer controlled reflective phase-only spatial light modulator (SLM) to adaptively tailor the input (and subsequent output) beam wavefront and polarization in a few-mode fibre amplifier. In this way modal-coupling induced beam distortion within the fibre amplifier can be mitigated and we are able to generate at will any desired supported spatial mode guided in the fibre, including conventional LP modes, scalar OAM modes and cylindrical vector modes, at average powers >10 W and with a peak power of >11 kW. Our results pave the way to the realization of practical high-power structured laser sources with tunable chirality and polarization.

Keywords: high power; light beams; power; power electronically; electronically controlled; vector

Journal Title: Photonics Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.