LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structured laser beams: toward 2-μm femtosecond laser vortices

Photo from wikipedia

Structured ultrashort-pulse laser beams, and in particular eigenmodes of the paraxial Helmholtz equation, are currently extensively studied for novel potential applications in various fields, e.g., laser plasma acceleration, attosecond science, and… Click to show full abstract

Structured ultrashort-pulse laser beams, and in particular eigenmodes of the paraxial Helmholtz equation, are currently extensively studied for novel potential applications in various fields, e.g., laser plasma acceleration, attosecond science, and fine micromachining. To extend these prospects further, in the present work we push forward the advancement of such femtosecond structured laser sources into the 2-μm spectral region. Ultrashort-pulse Hermite– and Laguerre–Gaussian laser modes both with a pulse duration around 100 fs are successfully produced from a compact solid-state laser in combination with a simple single-cylindrical-lens converter. The negligible beam astigmatism, the broad optical spectra, and the almost chirp-free pulses emphasize the high reliability of this laser source. This work, as a proof of principle study, paves the way toward few-cycle pulse generation of optical vortices at 2 μm. The presented light source can enable new research in the fields of interaction with organic materials, next generation optical detection, and optical vortex infrared supercontinuum.

Keywords: structured laser; beams toward; laser; toward femtosecond; laser beams

Journal Title: Photonics Research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.