LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies

Photo from wikipedia

Solitary foraging insects display stunning navigational behaviours in visually complex natural environments. Current literature assumes that these insects are mostly driven by attractive visual memories, which are learnt when the… Click to show full abstract

Solitary foraging insects display stunning navigational behaviours in visually complex natural environments. Current literature assumes that these insects are mostly driven by attractive visual memories, which are learnt when the insect’s gaze is precisely oriented toward the goal direction, typically along its familiar route or towards its nest. That way, an insect could return home by simply moving in the direction that appears most familiar. Here we show using virtual reconstructions of natural environments that this principle suffers from fundamental drawbacks, notably, a given view of the world does not provide information about whether the agent should turn or not to reach its goal. We propose a simple model where the agent continuously compares its current view with both goal and anti-goal visual memories, which are treated as attractive and repulsive respectively. We show that this strategy effectively results in an opponent process, albeit not at the perceptual level–such as those proposed for colour vision or polarisation detection–but at the level of the environmental space. This opponent process results in a signal that strongly correlates with the angular error of the current body orientation so that a single view of the world now suffices to indicate whether the agent should turn or not. By incorporating this principle into a simple agent navigating in reconstructed natural environments, we show that it overcomes the usual shortcomings and produces a step-increase in navigation effectiveness and robustness. Our findings provide a functional explanation to recent behavioural observations in ants and why and how so-called aversive and appetitive memories must be combined. We propose a likely neural implementation based on insects’ mushroom bodies’ circuitry that produces behavioural and neural predictions contrasting with previous models.

Keywords: insects; goal; agent; insects mushroom; mushroom bodies; visual memories

Journal Title: PLoS Computational Biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.