LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Motor-related signals support localization invariance for stable visual perception

Photo from wikipedia

Our ability to perceive a stable visual world in the presence of continuous movements of the body, head, and eyes has puzzled researchers in the neuroscience field for a long… Click to show full abstract

Our ability to perceive a stable visual world in the presence of continuous movements of the body, head, and eyes has puzzled researchers in the neuroscience field for a long time. We reformulated this problem in the context of hierarchical convolutional neural networks (CNNs)—whose architectures have been inspired by the hierarchical signal processing of the mammalian visual system—and examined perceptual stability as an optimization process that identifies image-defining features for accurate image classification in the presence of movements. Movement signals, multiplexed with visual inputs along overlapping convolutional layers, aided classification invariance of shifted images by making the classification faster to learn and more robust relative to input noise. Classification invariance was reflected in activity manifolds associated with image categories emerging in late CNN layers and with network units acquiring movement-associated activity modulations as observed experimentally during saccadic eye movements. Our findings provide a computational framework that unifies a multitude of biological observations on perceptual stability under optimality principles for image classification in artificial neural networks.

Keywords: classification; motor related; related signals; invariance; stable visual; image

Journal Title: PLoS Computational Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.