LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SMetABF: A rapid algorithm for Bayesian GWAS meta-analysis with a large number of studies included

Photo by nspm from unsplash

Bayesian methods are widely used in the GWAS meta-analysis. But the considerable consumption in both computing time and memory space poses great challenges for large-scale meta-analyses. In this research, we… Click to show full abstract

Bayesian methods are widely used in the GWAS meta-analysis. But the considerable consumption in both computing time and memory space poses great challenges for large-scale meta-analyses. In this research, we propose an algorithm named SMetABF to rapidly obtain the optimal ABF in the GWAS meta-analysis, where shotgun stochastic search (SSS) is introduced to improve the Bayesian GWAS meta-analysis framework, MetABF. Simulation studies confirm that SMetABF performs well in both speed and accuracy, compared to exhaustive methods and MCMC. SMetABF is applied to real GWAS datasets to find several essential loci related to Parkinson’s disease (PD) and the results support the underlying relationship between PD and other autoimmune disorders. Developed as an R package and a web tool, SMetABF will become a useful tool to integrate different studies and identify more variants associated with complex traits.

Keywords: bayesian gwas; gwas meta; meta; meta analysis

Journal Title: PLoS Computational Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.