LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oscillator decomposition of infant fNIRS data

Photo by jontyson from unsplash

The functional near-infrared spectroscopy (fNIRS) can detect hemodynamic responses in the brain and the data consist of bivariate time series of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) on each… Click to show full abstract

The functional near-infrared spectroscopy (fNIRS) can detect hemodynamic responses in the brain and the data consist of bivariate time series of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) on each channel. In this study, we investigate oscillatory changes in infant fNIRS signals by using the oscillator decompisition method (OSC-DECOMP), which is a statistical method for extracting oscillators from time series data based on Gaussian linear state space models. OSC-DECOMP provides a natural decomposition of fNIRS data into oscillation components in a data-driven manner and does not require the arbitrary selection of band-pass filters. We analyzed 18-ch fNIRS data (3 minutes) acquired from 21 sleeping 3-month-old infants. Five to seven oscillators were extracted on most channels, and their frequency distribution had three peaks in the vicinity of 0.01-0.1 Hz, 1.6-2.4 Hz and 3.6-4.4 Hz. The first peak was considered to reflect hemodynamic changes in response to the brain activity, and the phase difference between oxy-Hb and deoxy-Hb for the associated oscillators was at approximately 230 degrees. The second peak was attributed to cardiac pulse waves and mirroring noise. Although these oscillators have close frequencies, OSC-DECOMP can separate them through estimating their different projection patterns on oxy-Hb and deoxy-Hb. The third peak was regarded as the harmonic of the second peak. By comparing the Akaike Information Criterion (AIC) of two state space models, we determined that the time series of oxy-Hb and deoxy-Hb on each channel originate from common oscillatory activity. We also utilized the result of OSC-DECOMP to investigate the frequency-specific functional connectivity. Whereas the brain oscillator exhibited functional connectivity, the pulse waves and mirroring noise oscillators showed spatially homogeneous and independent changes. OSC-DECOMP is a promising tool for data-driven extraction of oscillation components from biological time series data.

Keywords: oscillator; time series; osc decomp; infant fnirs; fnirs data

Journal Title: PLoS Computational Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.