LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Assessing the impact of lateral flow testing strategies on within-school SARS-CoV-2 transmission and absences: A modelling study

Photo from wikipedia

Rapid testing strategies that replace the isolation of close contacts through the use of lateral flow device tests (LFTs) have been suggested as a way of controlling SARS-CoV-2 transmission within… Click to show full abstract

Rapid testing strategies that replace the isolation of close contacts through the use of lateral flow device tests (LFTs) have been suggested as a way of controlling SARS-CoV-2 transmission within schools that maintain low levels of pupil absences. We developed an individual-based model of a secondary school formed of exclusive year group bubbles (five year groups, with 200 pupils per year) to assess the likely impact of strategies using LFTs in secondary schools over the course of a seven-week half-term on transmission, absences, and testing volume, compared to a policy of isolating year group bubbles upon a pupil returning a positive polymerase chain reaction (PCR) test. We also considered the sensitivity of results to levels of participation in rapid testing and underlying model assumptions. While repeated testing of year group bubbles following case detection is less effective at reducing infections than a policy of isolating year group bubbles, strategies involving twice weekly mass testing can reduce infections to lower levels than would occur under year group isolation. By combining regular testing with serial contact testing or isolation, infection levels can be reduced further still. At high levels of pupil participation in lateral flow testing, strategies replacing the isolation of year group bubbles with testing substantially reduce absences, but require a high volume of testing. Our results highlight the conflict between the goals of minimising within-school transmission, minimising absences and minimising testing burden. While rapid testing strategies can reduce school transmission and absences, they may lead to a large number of daily tests.

Keywords: year; year group; testing strategies; transmission; school

Journal Title: PLoS Computational Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.