LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pruning deep neural networks generates a sparse, bio-inspired nonlinear controller for insect flight

Photo from wikipedia

Insect flight is a strongly nonlinear and actuated dynamical system. As such, strategies for understanding its control have typically relied on either model-based methods or linearizations thereof. Here we develop… Click to show full abstract

Insect flight is a strongly nonlinear and actuated dynamical system. As such, strategies for understanding its control have typically relied on either model-based methods or linearizations thereof. Here we develop a framework that combines model predictive control on an established flight dynamics model and deep neural networks (DNN) to create an efficient method for solving the inverse problem of flight control. We turn to natural systems for inspiration since they inherently demonstrate network pruning with the consequence of yielding more efficient networks for a specific set of tasks. This bio-inspired approach allows us to leverage network pruning to optimally sparsify a DNN architecture in order to perform flight tasks with as few neural connections as possible, however, there are limits to sparsification. Specifically, as the number of connections falls below a critical threshold, flight performance drops considerably. We develop sparsification paradigms and explore their limits for control tasks. Monte Carlo simulations also quantify the statistical distribution of network weights during pruning given initial random weights of the DNNs. We demonstrate that on average, the network can be pruned to retain a small amount of original network weights and still perform comparably to its fully-connected counterpart. The relative number of remaining weights, however, is highly dependent on the initial architecture and size of the network. Overall, this work shows that sparsely connected DNNs are capable of predicting the forces required to follow flight trajectories. Additionally, sparsification has sharp performance limits.

Keywords: bio inspired; network; neural networks; insect flight; deep neural; flight

Journal Title: PLoS Computational Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.