LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Systematic comparison of differential expression networks in MTB mono-, HIV mono- and MTB/HIV co-infections for drug repurposing

Photo by axger from unsplash

The synergy between human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (MTB) could accelerate the deterioration of immunological functions. Previous studies have explored the pathogenic mechanisms of HIV mono-infection (HMI), MTB… Click to show full abstract

The synergy between human immunodeficiency virus (HIV) and Mycobacterium tuberculosis (MTB) could accelerate the deterioration of immunological functions. Previous studies have explored the pathogenic mechanisms of HIV mono-infection (HMI), MTB mono-infection (MMI) and MTB/HIV co-infection (MHCI), but their similarities and specificities remain to be profoundly investigated. We thus designed a computational framework named IDEN to identify gene pairs related to these states, which were then compared from different perspectives. MMI-related genes showed the highest enrichment level on a greater number of chromosomes. Genes shared by more states tended to be more evolutionarily conserved, posttranslationally modified and topologically important. At the expression level, HMI-specific gene pairs yielded higher correlations, while the overlapping pairs involved in MHCI had significantly lower correlations. The correlation changes of common gene pairs showed that MHCI shared more similarities with MMI. Moreover, MMI- and MHCI-related genes were enriched in more identical pathways and biological processes, further illustrating that MTB may play a dominant role in co-infection. Hub genes specific to each state could promote pathogen infections, while those shared by two states could enhance immune responses. Finally, we improved the network proximity measure for drug repurposing by considering the importance of gene pairs, and approximately ten drug candidates were identified for each disease state.

Keywords: mtb hiv; hiv mono; hiv; mtb; mtb mono; drug

Journal Title: PLOS Computational Biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.